Status and challenegs of neutrino physics

Journée annuelle de P2I, January 2020, Saclay

S.Bolognesi (IRFU, CEA)

Neutrinos as probe to very high energy

The SM cannot answer to many fundamental questions in cosmology and HEP Similarly, to the discovery of Fermi scale with nuclear β-decays, we are now on a fishing expedition to the next energy scale of the necessary New Physics:

Neutrinos as probe to very high energy

The SM cannot answer to many fundamental questions in cosmology and HEP Similarly, to the discovery of Fermi scale with nuclear β-decays, we are now on a fishing expedition to the next energy scale of the necessary New Physics:

• Sensitive to very tiny effects thanks to interferometry (i.e neutrino oscillations)! Unique tool to study very high energy scale (today $\Lambda \sim 10^{14}$ GeV)

 \rightarrow Search of **CP violation in the leptonic sector** (related with matter/antimatter asymmetry in the Universe)

- → What is the **New Symmetry hidden behind the mass and flavour mixing?**
- → Why neutrinos do have mass?

Neutrinos as door to New Physics

• Expansion of Lagrangian in terms of NP energy scale (Λ_{uv}): $\mathcal{L} = \mathcal{L}_{SM} + \frac{1}{\Lambda_{UV}}\mathcal{L}_5 + \dots$

 \mathcal{L}_{SM} SM as effective theory valid until UV cutoff

$$\frac{1}{\Lambda_{UV}}\mathcal{L}_5 = \frac{v^2}{\Lambda_{UV}}\nu\nu.$$
 $\frac{246^2}{10^{15}}GeV \approx 10^{-2}eV$

The only 5th order operator possible according to fundamental symmetries: neutrino (Majorana!) mass is the first order effect of NP

→ New type of fundamental particle

 \rightarrow Discovery of **lepton number violation** (accidental conservation in SM: no symmetry supporting it)

→ Naturally emerging in **leptogenesis scenarios to create matter/antimatter asymmetry**

Neutrinos as door to New Physics

Expansion of Lagrangian in terms of NP energy scale (Λ_{uv}): $\mathcal{L} = \mathcal{L}_{SM} + \frac{1}{\Lambda_{uv}}\mathcal{L}_5 + \dots$

SM as effective theory valid until UV cutoff \mathcal{L}_{SM}

$$\frac{1}{\Lambda_{UV}}\mathcal{L}_5 = \frac{v^2}{\Lambda_{UV}}\nu\nu. \qquad \frac{246^2}{10^{15}}GeV \approx 10^{-2}eV$$

1

The only 5th order operator possible according to fundamental symmetries: neutrino (Majorana!) mass is the first order effect of NP

- → New type of fundamental particle
- \rightarrow Discovery of **lepton number violation** (accidental conservation in SM: no symmetry supporting it)
- → Naturally emerging in leptogenesis scenarios to create matter/antimatter asymmetry
- Peculiar nature of v and being in direct contact with $\Lambda_{\mu\nu}$: natural to expect new type of interactions for neutrinos: Non Standard Interactions

Neutrino oscillations

- Oscillation discovered with atmospheric and solar neutrinos by SuperKamiokande and SNO Since then, accelerator (and reactor) neutrinos provided a controlled source
- Oscillation probability estimated by comparing v (and \overline{v}) rate by flavor between source (near detectors) and far detectors:

$$P(\nu_{\alpha} \rightarrow \nu_{\beta}) = \frac{\sin^2(2\theta) \sin^2}{\text{amplitude}} \left(\frac{\Delta m_{ji}^2 [\text{eV}^2] L[\text{km}]}{E_{\nu} [\text{GeV}]} \right)$$
frequency

(simplified 2-flavors approximation)

Neutrino oscillations

- Oscillation discovered with atmospheric and solar neutrinos by SuperKamiokande and SNO Since then, accelerator (and reactor) neutrinos provided a controlled source
- Oscillation probability estimated by comparing v (and \overline{v}) rate by flavor between source (near detectors) and far detectors:

$$P(v_{\alpha} \rightarrow v_{\beta}) = \sin^{2}(2\theta) \sin^{2} \left(1.27 \frac{\Delta m_{ji}^{2} [eV^{2}]L[km]}{E_{\nu}[GeV]} \right)$$

amplitude frequency

(simplified 2-flavors approximation)

• Full 3-flavors formalism: PMNS matrix

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} U_{e1}^* & U_{e2}^* & U_{e3}^* \\ U_{\mu 1}^* & U_{\mu 2}^* & U_{\mu 3}^* \\ U_{\tau 1}^* & U_{\tau 2}^* & U_{\tau 3}^* \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

 $|\nu_{\alpha}\rangle = \sum_{i} U_{\alpha i}^{*} |\nu_{i}\rangle$ $\begin{array}{c} U_{_{\alpha i}} \text{ are expressed in terms of 3 mixing} \\ \text{ angles (}\theta_{_{13}}, \theta_{_{23}}, \theta_{_{12}}\text{) and a phase }\delta_{_{CP}} \end{array}$

Neutrino oscillations

- Oscillation discovered with atmospheric and solar neutrinos by SuperKamiokande and SNO Since then, accelerator (and reactor) neutrinos provided a controlled source
- Oscillation probability estimated by comparing v (and \overline{v}) rate by flavor between source (near detectors) and far detectors:

(to exploit v_1 need $E_2 > m_1 1.78 \text{ GeV}$)

T2K (T2HK) and NOVA working point

DUNE wideband beam covers (at low energy) also the second oscillation maximum

Latest results: $\sin\theta_{23}$, Δm^2_{32}

- $\sin\theta_{23} \sim \text{amplitude of the } v_{\mu} (\overline{v}_{\mu}) \text{ disappearance}$
- $\Delta m^2_{31(32)}$ ~ frequency of the disappearance (position of the minima)

Latest results: mass hierarchy

MH through matter effects (long baseline) by comparing v_{μ} vs \overline{v}_{μ} disappearance

NOVA: NH preferred at 1.9σ

Latest results: mass hierarchy

Latest results: δ_{CP}

PMNS characterization

PMNS characterization

PMNS characterization

Why such (unexpected) shape? (e.g compared to CKM) → constrain of NP standing behind flavour mixing pattern

DUNE (T2HK)

 $\theta_{_{12}}$

 θ_{13}

 θ_{23}

 δ_{CP}

MH

3σ ΝΟ

5σ

Examples of model predictions:

3σ

 2σ

Discrete flavour symmetries \rightarrow neutrino mixing sum-rules

TBM

• GRA

• GRB

• HG

0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

 $\sin^2 \theta_{12}^{\nu}$

Eur.Phys.J. C78 (2018) no.4, 286

• Best fit

Littlest Seesaw model with flavour symmetry

Plausible scenario of oscillation precision measurements

Mass hierarchy:

Today 3σ from combination (+NOVA) \rightarrow JUNO 3-4 σ in 6y (from solar-sector oscillation in vacuum) \rightarrow DUNE 5σ in 1-2y (with beam matter-effects) \rightarrow Hyperkamiokande 5σ in 10y (with atm)

CP-violation discovery

 3σ at T2K-II (+ 3σ T2K+NOVA) $\rightarrow 5\sigma$ in 2030 HK, DUNE $\rightarrow \delta_{cP}$ precision measurement: ~10 degrees in 5-10y DUNE (wide beam)

The challenge to the oscillation precision measurements

- Measurements systematics-dominated (thousands of neutrino interactions)
 - JUNO: 3% energy resolution and a factor of 6 better energy scale than previous experiments

→ Crucial role of Near Detectors: more and more sophisticated

The ultimate v characterization

- Indirect BSM limits: from oscillation experiments at large distances
- Direct BSM effects: suppressed by indirect limits from SM precision → high statistics sources: detectors near to reactors/accelerators or large masses
 - Search for Majorana neutrino nature with $0\nu\beta\beta$
 - Phenomenology behind non-unitarity: NSI or sterile neutrinos

complete program of:
+ similar experiments at reactors
+ short baseline at accelerator
(eg MicroBoone, SBL at FNAL)
+ pion DAR neutrinos from neutron source
(eg JSNS² at JPARC)

→ Reactor anomaly plagued by uncertainties on reactor flux measurement

→ other hints (MiniBoone, LSND) difficult to reconcile in a 'natural' scenario

 → indirect constraints from cosmology for ANY relativistic particle at early stage of universe (model-dependent)

The ultimate v characterization

- Indirect BSM limits: from oscillation experiments at large distances
- Direct BSM effects: suppressed by indirect limits from SM precision → high statistics sources: detectors near to reactors/accelerators or large masses
 - Search for Majorana neutrino nature with $0\nu\beta\beta$
 - Phenomenology behind non-unitarity: NSI or sterile neutrinos

 NSI in Charged Current: affecting oscillation results at production and detection point → can be constrained with near detector measurements at LBL

• NSI in Neutral Current:

affecting LBL results through matter effects: \rightarrow can be constrained with combination of multiple baselines/energies and with dedicated experiments of Coherent Elastic Neutrino-Nucleus Scattering at reactors 20

Neutrino-less double beta decay

Neutrino-less double beta decay

- large and not well known uncertainties on nuclear matrix element (g_A)
- phase space: large Q gives higher sensitivity to $m_{_{\beta\beta}}$ for the same experimental half life sensitivity

Neutrino-less double beta decay

- large and not well known uncertainties on nuclear matrix element (g_A)
- phase space: large Q gives higher sensitivity to $m_{\beta\beta}$ for the same experimental half life sensitivity
- Sensitivity:

$${}_{\langle 1/ au
angle} \propto \left(rac{M \cdot t_{live}}{\delta E \cdot B}
ight)^{rac{1}{2}}$$

need for **experimental technique** with excellent radiopurity and resolution

	FWHM	Backgr. (cts/y/ton)	$T_{1/2} [10^{26} y]$ for $m_{\beta\beta}=0.1eV$	
GERDA	~3.5	4	1 - 10	Ge detectors
Kamland-Zen	270	120	~0.5	Liquid Xenon baloon
EXO-200	170	71	~0.5	Liquid Xenon TPC 23
Cupid-Mo	5	few	0.1 - 1	Scintillating bolometers

- As long as expected signal is large enough, the largest mass wins... for very low rates the technological challenges are resolution and background:
 - Liquid Xenon resolution >1% due to intrinsic diffusion in liquid
 - R&D with Xenon gas using topology for background discrimination: TPC precision to be demonstrated on very large volumes (Panda-X, NEXT)

- As long as expected signal is large enough, the largest mass wins... for very low rates the technological challenges are resolution and background:
 - Liquid Xenon resolution >1% due to intrinsic diffusion in liquid
 - R&D with Xenon gas using topology for background discrimination: TPC precision to be demonstrated on very large volumes (Panda-X, NEXT)

Coherent v-nucleus scattering (CEvNS)

Bolometric technology applied to neutrinos from reactors:

Bolometric technology

0νββ

Very low signal rate:

- **large mass:** growing of large crystals to minimize external background and number of electronics channel
- radiopurity of the infrastructure + shielding

CEvNS

Very low threshold and on surface

- slow detectors \rightarrow array of **small detectors**
- shielding against cosmics

- Common needs/developments:
 - internal active bolometric shields
 - low threshold innovative phonon sensors (NTD, TES, KID) for heat/light/ionization signals

Mass measurement

Direct measurement:
 KATRIN <0.9eV @95% (FC limits)
 → ultimate sensitivity 0.2eV

 $dN/dE = |U_{e1}|^2 m_1^2 + |U_{e2}|^2 m_2^2 + |U_{e3}|^2 m_3^2$

 $(m_{_{\beta\beta}} \text{ in } 0_V \beta \beta \text{ is also a direct mass})$ measurement <~100meV if we think that neutrino is Majorana)

 Lower bound on mass sum depends on mass ordering from oscillation experiments

$$\Sigma \equiv \sum_{i=1}^{3} m_{i} = \begin{cases} m_{0} + \sqrt{\Delta m_{21}^{2} + m_{0}^{2}} + \sqrt{\Delta m_{31}^{2} + m_{0}^{2}} & \text{(NO)} \end{cases}$$

$$\Sigma \equiv \sum_{i=1}^{n} m_i = \begin{cases} m_0 + \sqrt{|\Delta m_{32}^2| + m_0^2} + \sqrt{|\Delta m_{32}^2| - \Delta m_{21}^2 + m_0^2} & \text{(IO)} \end{cases}$$

 $\rightarrow\,$ indirect way to exclude IH

Conclusions

- Will the next major HEP discovery be in the neutrino sector? In any case sure physics output in the next generation of experiments:
 - PMNS characterization to high precision, mass hierarchy determination and CP violation in leptons
 - $0\nu\beta\beta$ and NSI search: establishing limits to NP models and defining the road to future discovery
 - R&D of highly capable detectors
- The neutrino community musts increase and work coherently to face such challenges:
 - The size and complexity of next generation of experiments (JUNO, DUNE, T2HK, CUPID) requires critical mass to reach visibility
 - In order to exploit neutrinos as door to NP, we need a coherent and complete understanding of the neutrino sector

BACK-UP

50

 $N_{\rm PE}$

Near detector design

■ Enabling measurement of protons (and pions/muons) with very low momentum and neutrons → much better reconstruction of neutrino energy

T2(H)K near detector upgrade (ND280) to be installed in 2021

- Characterization of MicroMegas resistivity
- Commissioning of ND280 upgrade
- Setup of first oscillation analysis with data from upgraded detector

Proposal of DUNE near detector (3DST): the same detector inside the KLOE magnet

R&D to adapt to new geometry and magnetic field

WP4: A.Delbart, O.Drapier, S.Hassani

Bolometric technology in BSMNu

Both pure and hybrid bolometric detectors are used in BSMNu

WP5: A.Giuliani, C.Nones, S.Marnieros Bolometers

CUPID (CUORE Upgrade with Particle ID) is a proposed $0v2\beta$ bolometric experiment exploiting the **CUORE infrastructure (LNGS)** and with a **background 100 times lower at the ROI**

- Conclude CUPID-Mo data taking and analysis
- Develop new demonstrators for setting enrichment/purification/crystallization protocol

RICOCHET and NUCLEUS aiming at studying Coherent Elastic v-Nucleus Scattering (CENNS) at a nuclear reactor

- Neutrino magnetic moment
- New massive weak-interaction mediator
- Non-standard interactions
- · Active-to-sterile neutrino oscillations
- In applications, nuclear reactor monitoring
- Low threshold bolometers based on advanced phonon sensors
- Internal active bolometric shields for background control
 - Applications both in $0v2\beta$ and CENNS

Hybrid bolometers in CUPID

DT = DE/C

At cryogenic temperature C is small enough (eg 100g Ge crystal kept at \sim 15 mK will experience a \sim 0.3 mK temperature rise following a 1 MeV energy deposition) The most mature sensor technology is represented by Neutron Transmutation Doped (NTD) germanium thermistors, consisting of a small Ge crystal whose resistance rises sharply as the temperature decreases. Possible alternatives are Transition Edge Sensors (TES), in which a superconductive film is kept within the normal-to-superconducting transition, or microwave Kinetic Inductance Detectors (KID), which measure the change of the kinetic inductance of a superconductive element following the absorptions of athermal phonons. The sensor baseline for CUPID, both for the Li 2 MoO 4 crystals and the light detectors, consists of Ge thermistors, although TESs and KIDs are under study as possible light detectors for their superior signal-to-noise ratio and speed.

Readout Scheme

The **absorber** allows conversion from energy to heat (phonons)

For semi-conductors and superconductors, only lattice vibrations contribute to thermal capacitance (C ~ T³)

Small detectors & low temperatures = lower thresholds

Readout of TES done using **SQUID** amplifiers, quantum-limited magnetometers, ideal for small currents.

Small changes in temperature can be captured by **Transition Edge Sensors** (TES), which allow great sensitivity to small temperature depositions.

TES Resistance @ Tc

NUCLEUS

Slow detectors \rightarrow shielding + small detectors to allow small dead time above-ground Small detectors also enble low threshold

Each target crystal will be equipped with an evaporated tungsten TES (superconducting transition temperature T c \sim 15 mK) readout by SQUID (Superconducting QUantum Interference Device) electronics. This thermometer technology was developped for the CRESST experiment

The NUCLEUS collaboration also envisions to use target crystals made of Mo-doped Li 2 WO 4 material, such as those developed in the BASKET project. This target material basically exhibits the same advantage than CaWO 4 for the detection and study of CEvNS, except that the presence of 6 Li allows to tag neutrons through the 6 Li + n $\rightarrow \alpha$ + t reaction, which has a large cross section. If the energy release of the α + t event E = 4.78 MeV + E n (E n being the initial energy of the neutron) is properly measured, Mo-doped Li 2 WO 4 target crystals would allow the monitoring and the characterization of the neutron backgrounds in the direct vicinity of the target volume.

This feature would be a key advantage in a reactor CEvNS experiment because neutrons are the ultimate type of background to fight against, as they are indistinguishable from a CEvNS nuclear recoil.

RICOCHET

Double Energy Measurement for Semiconductor Germanium Detectors

- Ionization / heat ratio depends on the particle type
- Achieve a 10 eV ionization resolution
- Great synergy with the EDELWEISS collaboration

